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Abstract8

This study provides insight into how CMIP5 climate models perform in sim-9

ulating summer and winter precipitation, at different geographical locations and10

climate conditions. Precipitation biases in the CMIP5 historical (1901-2005)11

simulations relative to the Climatic Research Unit (CRU) observations are eval-12

uated over 8 regions exhibiting distinct seasonal hydroclimates: moist tropical13

(Amazonia and central Africa); monsoonal (southern China); moist continental14

(central Europe); semi-arid (western United States and eastern Australia); and15

polar (Siberia and Canada). While the bias and monthly quantile bias (MQB,16

defined herein) reflect no substantial differences in CMIP5 summer and winter17

precipitation simulations at the global scale, strong seasonality and high inter-18

model variability are found over the selected moist tropical regions (i.e., Amazon19

and central Africa). In the semi-arid regions, high inter-model precipitation vari-20

ability is also displayed, especially in summer, while the median of simulations is21

an overestimate of both winter and summer precipitation. In Siberia and central22

Europe, most CMIP5 models underestimate summer precipitation, and overes-23

timate it in winter. Also, the MQB values decrease as the choice of quantile24

thresholds increase, implying that the underestimation of summer precipitation25

is primarily associated with biases in lower quantiles of the precipitation distri-26

bution. While the CMIP5 models exhibit similar behaviors in simulating high-27

latitude winter precipitation, they differ substantially in summer simulations for28

the selected Canadian and Siberian regions. Finally, in the monsoonal southern29

China region, CMIP5 models exhibit large overall precipitation biases in both30

summer and winter, as well as at higher quantiles.31
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1 Introduction34

Global climate models have been used to simulate historical and projected precipita-35

tion for climate change and variability studies. Several modeling groups and interna-36

tional collaborative activities, such as the Intergovernmental Panel on Climate Change37

(IPCC; IPCC (2007)), provide data sets of historical and future climate simulations.38

However, climate model simulations are subject to uncertainties and biases because39

of errors in model parameterization, boundary conditions, simplifying assumptions,40

model structure, and input variables (Feddema et al. (2005); Tebaldi et al. (2006);41

John and Soden (2007); Reichler and Kim (2008); Liepert and Previdi (2012)).42

Water resources are particularly sensitive to changes in precipitation, which is a43

key variable in understanding the global water cycle and analyzing water availability44

(Seager et al. (2007); Kharin et al. (2007); Madani and Lund (2010); Cayan et al.45

(2010); Sivakumar (2011); Stoll et al. (2011); Azarderakhsh et al. (2011); Wehner46

(2012); Hassanzadeh et al. (2013); AghaKouchak et al. (2013); Nazemi et al. (2013);47

Mirchi et al. (2013)). However, GCM-based precipitation simulations are inherently48

uncertain and subject to systematic and unpredictable (random) biases (Feddema et al.49

(2005); Min et al. (2007); Brekke and Barsugli (2013); Mehrotra and Sharma (2012)).50

Therefore, quantification and characterization of biases and uncertainties in GCM-51

based precipitation climate simulations are necessary for understanding the available52

data sets and their potential applications in water cycle analysis and future water53

resources management.54

Recently, the Coupled Model Intercomparison Project Phase 5 (CMIP5) has pro-55

vided the climate community with a suite of coordinated climate model simulations56

to facilitate addressing science and policy questions relevant to the Intergovernmental57

Panel on Climate Change (IPCC) 5th Assessment Report (AR5) (Meehl and Bony58
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(2011); Taylor et al. (2012)). Compared to the Phase 3 of the project (CMIP3), which59

contributed to the IPCC 4th Assessment Report, the CMIP5 simulations incorpo-60

rate more advanced treatments of land use change and anthropogenic aerosols forcings61

(Knutti (2010); Taylor et al. (2012); Stott et al. (2013);). By considering multiple62

climate models with different model physics and/or forcings, the CMIP5 experiment63

provides an ensemble of opportunity to explore uncertainty in climate model simula-64

tions (Stott et al. (2013)).65

Given the uncertainties in forcings, initial conditions, and model structures, one66

cannot expect climate models to accurately replicate historical observations in every67

respect. Since the development of the first climate models, evaluation of historical68

climate simulations against ground-based observations has become an ongoing activity69

of the climate community (Bony et al. (2006)), since future improvements in climate70

model simulations largely rely on extensive and targeted evaluation studies. Gleckler71

et al. (2008) has introduced a number of performance metrics for evaluation of climate72

model simulations against observations. AghaKouchak and Mehran (2013) also has73

proposed several volumetric indicators and skill scores for assessing biases in climate74

model simulations.75

A myriad of studies have focused on validation of climate model historical precip-76

itation simulations (e.g., Phillips and Gleckler (2006); Dai (2006); Sun et al. (2007);77

Chen and Knutson (2008); Schaller et al. (2011); Moise and Delage (2011); Liu et al.78

(2012); Flaounas et al. (2012); Watanabe et al. (2012); Schubert and Lim (2013);79

Kharin et al. (2013); Sillmann et al. (2013); Hirota and Takayabu (2013); Gaetani and80

Mohino (2013); Kumar et al. (2013); Catto et al. (2013); Knutti and Sedláček (2013);81

Balan Sarojini et al. (2012); Deser et al. (2012)). In a recent study, Mehran et al. (2014)82

evaluated a wide range of CMIP5 historical precipitation simulations and concluded83

that over many regions most CMIP5 precipitation simulations were in fairly good84
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agreement with satellite observations. However, over deserts and certain high latitude85

regions, there were major discrepancies between model simulations and observations.86

Mehran et al. (2014) also showed that while removing the mean-field bias improves87

the overall bias, it does not lead to a significant improvement at higher quantiles of88

precipitation simulations. Hao and AghaKouchak (2013) evaluated changes in joint89

precipitation and temperature extremes in CMIP5 simulations against ground-based90

observations. Their results showed that models simulations agreed with ground-based91

observations on the sign of the change in occurrence of joint extremes; however, dis-92

crepancies were observed on regional patterns and magnitudes of change in individual93

CMIP5 climate models.94

The present study evaluates the seasonal and regional biases in CMIP5 histori-95

cal (1901-2005) simulations of continental precipitation with respect to the observa-96

tional Climatic Research Unit (CRU; Mitchell and Jones (2005)) data set, using several97

quantitative statistical measures. Furthermore, the cumulative distribution functions98

(CDFs) of the CMIP5 precipitation simulations are investigated, especially at higher99

quantiles of precipitation. The seasonal (summer and winter) biases are evaluated100

against observations over 8 regions across the globe. The selected regions have distinct101

climate and seasonality, and hence the study provides insight into how models perform102

at different geographical locations and climate conditions. The remainder of the paper103

is organized as follows. The reference data and climate model simulations are briefly104

introduced in Section 2. In Section 3, the methodology and results are discussed in105

detail. Section 4 is devoted to concluding remarks.106
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2 Data107

The Climatic Research Unit (CRU, New et al. (2000); Mitchell and Jones (2005))108

monthly precipitation data are used as reference observations. CRU data sets have109

been widely applied in many regional and global studies, and have been validated110

against other observational data sets (precipitation, Tanarhte et al. (2012); tempera-111

ture, Morice et al. (2012); Jones et al. (2012)). In this study, 34 CMIP5 precipitation112

simulations and their multimodel ensemble median for the period 1901-2005 are eval-113

uated relative to CRU observations. Table 1 lists the CMIP5 model simulations114

considered in this study. In addition to simulations by physical climate models that115

include prescribed historical atmospheric CO2 concentrations, runs of ”Earth Systems116

Models” with a prognostic global carbon cycle that are driven by the corresponding117

prescribed historical CO2 emissions (designated by the suffix esm) also are consid-118

ered here. The CMIP5 simulations are archived in the Global Organization for Earth119

System Science Portals (GO-ESSP) coordinated by the United States Department of120

Energy (DOE) Program for Climate Model Diagnosis and Intercomparison (PCMDI).121

For consistency, the CMIP5 precipitation simulations and CRU observations are all122

re-gridded to a common 2o x 2o spatial resolution.123

3 Methodology124

In this study, summer is defined as June, July, and August (JJA) in the Northern125

Hemisphere (NH) and December, January, and February (DJF) in the Southern Hemi-126

sphere (SH), whereas winter is defined as DJF in the NH and JJA in the SH. First,127

summer and winter biases in CMIP5 climate model simulations are estimated for the128

entire distribution of precipitation (B = Σn
i=1 (SIMi) /Σn

i=1 (OBSi), where SIM and129

OBS denote simulations and observations, while i = 1, . . . , n refer to a particular sam-130
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ple of the observations and corresponding simulations). Then, the monthly quantile131

bias (MQB; AghaKouchak et al. (2011)) is derived for a number of areas around the132

globe, in order to further study the corresponding regional summer and winter biases.133

The MQB is defined as the mean ratio of CMIP5 simulations (hereafter, SIM) over134

CRU observations (hereafter, OBS) above the quantile q:135

MQB =
Σn

i=1 (SIMi|SIMi ≥ q)

Σn
i=1 (OBSi|OBSi ≥ q)

(1)

An MQB of 1 corresponds to no bias in model simulations versus ground-based136

observations above the choice of quantile threshold (e.g., the 75th or 90th percentiles137

of non-zero precipitation data for each model separately). Note that in all models,138

small values below the typical precipitation detection limits (here, 10−5mm/s or ≈139

0.9mm/day) are assumed to be zero. The MQB values are computed for selected140

regions in the western United States, Australia, Amazon, Europe, Canada, Siberia,141

southern China, and central Africa (see Figure 1) for summer and winter. The selected142

boxes cover regions with different climatic conditions. The regional climates can be143

broadly described as: moist tropical (Amazonia and central Africa); monsoonal (south-144

ern China); moist continental (central Europe); semi-arid (western United States and145

eastern Australia); and polar (Siberia and Canada).146

The designations of regional climates follow a hydroclimatic schema: moist tropical147

implies that summer and winter rainfall is associated with shifts in the convective148

Intertropical Convergence Zone (ITCZ); monsoonal regions occur where the prevailing149

seasonal winds produce a wet summer but a relatively dry winter; moist continental150

describes regions having both moist summers and winters; semi-arid suggests generally151

drier seasons, especially in summer; and polar regions are associated with cold, snowy152

winters and cool, moist summers. In the selected regions, only simulations over land153
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are evaluated where ground-based observations are available.154

4 Results155

Figure 2 displays the bias ratios of 12 selected CMIP5 simulations in summer, whereas156

Figure 3 shows winter bias ratios for the same models (white areas in the panels corre-157

spond to no data in simulations or observations). One can see that several models show158

distinct differences (often opposite sign of bias) in summer and winter. For example,159

most models underestimate summer precipitation in Europe, while they overestimate160

winter precipitation. Over Amazonia, on the other hand, most models overestimate161

summer precipitation, while they underestimate winter precipitation. In several parts162

of the globe, including the western U.S., most models tend to overestimate precipita-163

tion in both summer and winter. Figure 4 displays the global averages of the overall164

bias, MQB above 75th quantile (Q75), and MQB above 90th quantile (Q90) for all165

34 CMIP5 models as well as their ensemble median. All panels in Figure 4 show a166

consistent positive bias, in that none of the climate models global averages underesti-167

mate precipitation relative to observations. With respect to global averages, all CMIP5168

climate models and their ensemble median overestimate precipitation in summer and169

winter by between about 2% to 33%. As shown, the bias and MQB values of summer170

and winter global averages are similar, though overall, the bias and MQB values in171

summer are slightly higher than those of winter.172

Unlike global averages of summer and winter, the regional summer and winter biases173

over the selected geographical and climatic regions are substantially different. Figure174

5 displays the regional summer and winter biases for all the CMIP5 models and their175

ensemble median over (a) Europe, (b) Amazon, (c) central Africa, (d) Australia, (e)176

western United States, (f) Siberia, (g) Canada, and (h) south China. Figures 6 and177
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7 show similar figures for MQB Q75 (75th percentile threshold) and MQB Q90 (90th178

percentile threshold), respectively.179

One can see that most models and their ensemble median underestimate summer180

precipitation over Europe, while they overestimate winter precipitation there (Figure181

5a) - see also Scoccimarro et al. (2013). As shown, model biases are less (closer to182

1) at higher quantiles (Figures 6a and 7a), suggesting that the overall summer and183

winter biases are associated more with lower quantiles of precipitation. This result184

can be understood as a general tendency for today’s climate models to simulate light185

rainfall too frequently, and intense rainfall too rarely (Sillmann et al. (2013)). Such an186

excessive ”drizzle” phenomenon, presumably associated with unrealistic representation187

of the microphysics of precipitation, was previously noted as a common error in earlier-188

generation models (Dai (2006); Sun et al. (2007); Stephens et al. (2010)). This error189

apparently carries over to the CMIP5 models as well, but will be shown to vary with190

region in the analysis that follows.191

In contrast to central Europe, most CMIP5 model simulations underestimate winter192

precipitation over the Amazon region (see Figure 5b). The overall bias (Figure 5b) and193

MQB values (Figures 6b and 7b) for the CMIP5 models, as well as for their ensemble194

median, indicate that CMIP5 climate models simulate precipitation here somewhat195

more reliably in summer than in winter. It should be noted that winter MQB values196

also are higher than those of summer (e.g., compare MQB above Q90 in summer and197

winter in Figure 7b).198

The regional bias and MQB over central Africa are plotted in Figures 5c, 6c,199

and 7c. As shown, the CMIP5 inter-model variability with respect to bias is substan-200

tial in both summer and winter precipitation simulations. The overall bias values are201

somewhat higher in summer, while the MQB values are higher in winter, indicating202

that there are substantial biases associated with high quantiles of winter precipitation203
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simulations in central Africa. On the other hand, the overall summer biases can be at-204

tributed more to light rainfall events, as the overall biases are larger than corresponding205

MQB values.206

Amazonia and central Africa both can be categorized as moist tropical regions in207

which summer or winter rainfall is associated with shifts in the convective Intertropical208

Convergence Zone (ITCZ; Waliser and Gautier (1993)). In SH summer (DJF) the209

ITCZ, a narrow band of intense convective rainfall, moves south of the Equator, and210

both Amazonia and central Africa receive heavier convective precipitation than in SH211

winter (JJA). In both regions, the inter-model variability of precipitation is high, which212

is probably associated with the varying ability of the models to correctly simulate the213

ITCZ precipitation. It is well-known that climate models’ precipitation errors tend to214

be large in tropical regions such as Amazonia and central Africa, where shortcomings in215

model representations of convection are most apparent (Randall et al. (2007)). For this216

reason, numerous studies have focused on improving sub-grid scale parameterizations217

of convective events.218

Figures 5d, 6d, and 7d display the CMIP5 models’ overall summer and winter219

biases B and MQB values for semi-arid eastern Australia. In both seasons, most220

models overestimate precipitation, but since the summer biases deviate more from221

the optimum value of 1 (B = 1 indicates ”no bias”), it can be concluded that the222

models display somewhat better skill in simulating winter precipitation. A possible223

physical explanation for this seasonal asymmetry is that convective precipitation, which224

is prevalent in summer, is more poorly simulated than winter frontal precipitation,225

which is more realistically represented in today’s climate models (e.g. Catto et al.226

(2010)). The inter-model variability of the biases is also more substantial in summer227

than winter: although several CMIP5 models substantially underestimate Australian228

summer precipitation, a few models overestimate it by more than 180% , yielding an229
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overall ensemble-median overestimation of summer precipitation. The MQB values230

are of similar magnitude for summer and winter, however, suggesting that the larger231

overall biases in summer are attributable to errors in simulating lighter rainfall events232

over eastern Australia.233

Figures 5e, 6e, and 7e present the overall bias and MQB values for the CMIP5234

models and their ensemble median over another semi-arid region, the western United235

States. Here almost every CMIP5 model is seen to overestimate both summer and236

winter precipitation, characteristics that are displayed by the corresponding ensemble237

medians as well (with precipitation overestimated by about 31% and 37%, respectively).238

As their MQB values demonstrate, the CMIP5 models also substantially overestimate239

precipitation at high quantiles in both seasons. It is noteworthy that the winter biases,240

in particular, display somewhat more inter-model variability than in eastern Australia241

(Figures 5d, 6d, and 7d), possibly because of the more important role played by242

topography in determining the climate of the western U.S. In this respect also, there243

are inter-model variations in the placement of the high/low biases (B>1 / B<1) in the244

western United States (see Figure 3). Few of the models display high precipitation245

biases over the steep but spatially narrow Sierra Nevada mountain chain of California,246

for example, while most models exhibit a high bias over the broader Rocky mountain247

cordillera near the center of the western U.S. region defined in Figure 1. These spatial248

variations in precipitation bias are mainly a consequence of the relatively coarse hori-249

zontal resolution of the typical CMIP5 model ( a 2x2 degrees latitude/longitude grid)250

which effectively smooths and flattens topography, thereby distorting its impact on251

precipitation. Hence, increased horizontal resolution and improvements in the dynam-252

ics of atmospheric flow over topography in climate models could substantially improve253

their simulation of precipitation (Wehner et al. (2010); Ghan et al. (2002)).254

The overall bias and MQB values for the CMIP5 models and for their ensemble255
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median over the polar Siberian region are displayed in Figures 5f, 6f, and 7f. It can256

be seen that the inter-model variability of simulated summer precipitation biases are257

much higher than in the winter simulations, but the ensemble median result is very close258

to the CRU observations in this region. The winter simulations generally over-predict259

the observations, but by relatively small amounts. In contrast to the semi-arid western260

U.S., the MQB of precipitation simulations over Siberia are less than the corresponding261

B values, indicating that lower quantiles of precipitation contribute more to the overall262

bias. The Siberian simulations thus exemplify the common problem of excessive light263

and mid-range precipitation, but they display this tendency more in summer when264

frontal systems (i.e. extratropical cyclones) are weaker, and when convective processes265

contribute a greater fraction of the total precipitation.266

In contrast to their Siberian precipitation simulations, CMIP5 models and their267

ensemble median generally overestimate summer precipitation in the alternative polar268

region of northern Canada (see Figure 5g). The overall bias and MQB values for269

summer precipitation simulations also are substantially greater than those in Siberia270

(compare Figures 6g, and 7g with Figures 6f, and 7f), indicating more problematical271

simulation of heavy precipitation. Here, topography (e.g. the Canadian Rocky Moun-272

tain chain) may be partly responsible for some of the differences in summer biases with273

respect to Siberia. In winter, however, the overall biases and MQB values for Canada274

and Siberia are quite similar, suggesting a generally satisfactory CMIP5 simulation of275

the frontal systems that predominate in these polar regions.276

In the monsoonal southern China region, the CMIP5 models and their ensemble277

median clearly overestimate precipitation in both summer and winter (Figures 5h,278

6h, and 7h). Unlike, most other selected regions, the overall summer and winter279

precipitation biases are also reflected consistently at high quantiles of precipitation,280

indicating a general overestimation of intense precipitation events, but also with a281
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fairly high degree of inter-model variability. In summer, southern China is subject to282

monsoonal convective systems, but in winter, more to frontal systems with generally283

drier ”background” conditions. Limitations of climate models in capturing monsoonal284

and convective events have been recognized in previous publications (e.g., IPCC (2007)285

Ch. 8), but the general overestimation of winter precipitation implies that the CMIP5286

simulations of frontal systems and/or the parameterization of microphysical processes287

may also be problematical in this region.288

The study results indicate that the biases of CMIP5 simulated summer and win-289

ter precipitation are qualitatively different across regions. Figures 8 and 9 provide290

further insights into the distinct differences in the empirical cumulative distribution291

functions (CDFs) of the observed (black lines) and CMIP5 simulations (green lines)292

in summer and winter, respectively. (In these figures, green simulation lines situated293

rightward/below the observations (black line) imply the overestimation of precipitation,294

and vice versa.) For example, it is seen that the lower quantiles of simulated precipita-295

tion are generally underestimated relative to CRU observations in central Europe and296

Amazonia, but they are overestimated in the western United States and Siberia.297

Figures 8 and 9 also highlight structural differences in the regional CDFs , provid-298

ing insights into how the midrange values (near F(x) = 0.5) of the CMIP5 simulations299

vary across different regions. For example, the CDFs of the summer precipitation in300

the selected moist tropical regions are inflected in this midrange, possibly indicating301

marked differences in the physical processes that are operative in lighter versus heavier302

precipitation events. In polar regions, it is also apparent that the midrange values of303

summer precipitation are overestimated in CMIP5 simulations relative to CRU obser-304

vations.305

To show the variability and robustness of the biases across the models and regions,306

boxplots of biases values in summer and winter are presented in Figures 10 and 11. The307

13



figures display the median (red lines), 25th and 75th percentiles edges, and whiskers of308

simulated precipitation biases for each model and region separately (whiskers represent309

variability outside the upper (here, 75th) and lower (here, 25th) percentiles). One can310

see that there is substantial variability, not only model-to-model, but also region-to-311

region. In these figures, where the ensemble median stands relative to the intermodel312

range also indicates how consistent the simulation biases are across the selected CMIP5313

models.314

It is acknowledged that observational (here, CRU) data are subject to uncertainties,315

especially in the first half of the 20th century, when the spatial coverage of available316

observations was quite limited (Ferguson and Villarini (2012); New et al. (2000)). To317

assess the robustness of the results, the analyses presented in this paper have been318

tested for the more reliable observations from the period 1951-2005. The results are319

provided as Supplementary Material (see Figures S1 to S6), corresponding to Figures320

4 to 7. As shown, the results do not change substantially when data from the first321

half of the 20th century are eliminated from the analysis. To further examine the322

robustness of the statistics, the same analyses are performed using the University of323

Delaware precipitation data (Nickl et al. (2010)). As an example, Figure S7 (Supple-324

mentary Material) displays the global averages of the overall bias, MQB above 75th325

quantile (Q75), and MQB above 90th quantile (Q90) for all the CMIP5 models and326

their ensemble median relative to the University of Delaware (UD) global precipitation327

data (Similar to Figure 4, but with the UD precipitation as reference observation).328

One can see that the global average statistics are very similar using both CRU and UD329

observations. Figure S8 (Supplementary Material) shows the Regional summer and330

winter relative to the UD precipitation data over (a) Europe, (b) Amazon, (c) central331

Africa, (d) Australia, (e) western United States, (f) Siberia, (g) Canada, (h) south332

China (Similar to Figure 5, but with the UD precipitation as reference observation).333
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One can see that even at the regional scale, the presented statistics using two different334

observational data sets are consistent.335

5 Concluding Remarks336

Recent advances in numerical computing and climate models have led to an increase337

in climate simulations of the past and future. However, climate model simulations338

are inherently subject to many uncertainties, and thus diverse methods are needed339

to comprehensively quantify simulation biases and the physical errors associated with340

them. The United States Global Change Research Program (USGCRP (2009)) iden-341

tifies areas in which uncertainties limit our ability to estimate future climate change342

and its regional impacts that will entail mitigation and adaptation policy decisions.343

The quantification of biases in climate model simulations is therefore a prerequisite for344

future advances in both model development and policy formulation.345

In this paper, the seasonal and regional biases in CMIP5 historical (1901-2005)346

simulations are evaluated against the Climatic Research Unit (CRU) ground-based347

observations. The selected regions exemplify moist tropical, monsoonal, moist conti-348

nental, semi-arid, and polar hydroclimatic regimes. The cumulative distribution func-349

tions (CDFs) of the CMIP5 precipitation simulations also are investigated, especially350

at higher quantiles (i.e., 75th and 90th percentiles) that are relevant to the analysis of351

heavy precipitation events (Benestad (2003); Benestad (2006)).352

The global averages of overall bias (B) and monthly quantile bias (MQB) values353

indicate no substantial difference in summer versus winter precipitation simulations.354

In fact, at a global scale, all models overestimate the total precipitation amount as well355

as its higher quantiles (e.g., 75th and 90th percentiles). However, strong seasonality in356

bias values is observed over the selected moist tropical regions (Amazonia and central357
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Africa). Furthermore, the models exhibit high inter-model variability in the selected358

tropical regions, particularly in winter precipitation simulations. In both regions, sub-359

stantial biases are observed at high quantiles of precipitation. Moreover, the CDFs360

of the summer precipitation in the selected Amazonian and central African tropical361

regions (in contrast those of other regions) are more inflected in their midrange, possi-362

bly reflecting marked differences in the physical processes that are operative for lighter363

versus heavier precipitation events.364

Three of the selected regions (central Europe, Siberia, and Canada) experience cold365

winter climates, and warm-to-cool, moist summers. In the selected regions over Siberia366

and Europe, many CMIP5 models underestimate precipitation in summer, while over-367

estimating it in winter. In both areas, the MQB values decrease as the choice of368

quantile threshold increases, suggesting that the model underestimations of summer369

precipitation are primarily associated with biases in lower quantiles of precipitation.370

On the contrary, in the selected Canadian region, the CMIP5 models and their en-371

semble median overestimate summer precipitation. Furthermore, the overall biases372

of summer precipitation are substantially higher than those of the selected region in373

Siberia. However, the CMIP5 models exhibit a similar behavior in simulating winter374

precipitation over the selected cold regions.375

Two semi-arid areas (the western United States and Australia) are considered. In376

both regions, the CMIP5 simulations show high inter-model variability, particularly in377

summer, while the ensemble median overestimates precipitation in both summer and378

winter. Here the MQB values of summer and winter precipitation also are similar.379

Finally, the CMIP5 models exhibit substantial biases both in summer and winter in380

the selected southern China region, which is dominated by monsoonal regimes. Further381

improvements in sub-grid scale convective and cloud microphysical parameterizations382

are probably necessary to substantially improve precipitation simulations in this region.383
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The authors stress that the above conclusions are based on an exploratory analysis384

that exploits some of the available ground-based observations to evaluate the CMIP5385

seasonal simulations of continental precipitation. It is acknowledged that the CRU386

data sets, similar to all other observational data, are also subject to uncertainties that387

may affect the results. Furthermore, observational biases and uncertainties may have388

both systematic and random statistical characteristics. Efforts are underway by the389

authors to decompose the observed biases into systematic and random components390

using methods introduced by AghaKouchak et al. (2012) to further analyze CMIP5391

model uncertainties. It should be obvious that the biases and errors of climate model392

simulations are not limited to those discussed in this paper. The authors thus advo-393

cate that more effort should be devoted to the quantification and characterization of394

the details of biases exhibited by climate model simulations. It is hoped that further395

research to develop metrics for evaluating model performance will lead to more reliable396

precipitation simulations.397
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Figure 1: The continental regions selected for this study.



Figure 2: Bias ratio (CMIP5/CRU) of selected climate model simulations of summer
precipitation (June, July, August in the Northern Hemisphere, and December, January,
February in the Southern Hemisphere).



Figure 3: Bias ratio (CMIP5/CRU) of selected climate model simulations of winter
precipitation (December, January, February in the Northern Hemisphere, and June,
July, August in the Southern Hemisphere).



Figure 4: Global averages of the overall bias, MQB above 75th quantile (Q75), and
MQB above 90th quantile (Q90) for CMIP5 models and their ensemble median.



Figure 5: Regional summer and winter biases over (a) Europe, (b) Amazon, (c) central
Africa, (d) Australia, (e) western United States, (f) Siberia, (g) Canada, (h) south
China.



Figure 6: Regional summer and winter monthly quantile bias (MQB, 75th percentile
threshold) over (a) Europe, (b) Amazon, (c) central Africa, (d) Australia, (e) western
United States, (f) Siberia, (g) Canada, (h) south China.



Figure 7: Regional summer and winter monthly quantile bias (MQB, 90th percentile
threshold) over (a) Europe, (b) Amazon, (c) central Africa, (d) Australia, (e) western
United States, (f) Siberia, (g) Canada, (h) south China.



Figure 8: The empirical cumulative distribution functions (CDFs) of the observed
(black lines) and CMIP5 precipitation simulations (green lines) in summer.



Figure 9: The empirical cumulative distribution functions (CDFs) of the observed
(black lines) and CMIP5 precipitation simulations (green lines) in winter.



Figure 10: Boxplots of the median (red lines), 25th and 75th percentiles, and whiskers
of the biases of each CMIP5 summer precipitation simulation.



Figure 11: Boxplots of the median (red lines), 25th and 75th percentiles, and whiskers
of the biases of each CMIP5 winter precipitation simulation.



Table 1: List of 34 CMIP5 models and their related Institutions and countries (NSF:
National Science Foundation; DOE: Department of Energy; NCAR: National Center
for Atmospheric Research; CSIRO: Commonwealth Scientific and Industrial Research
Organisation; CMA: China Meteorological Administration; CAS: Chinese Academy Of
Sciences; TU: Tsinghua University; CERFACS: Centre Européen de Recherche et de
Formation Avancée en Calcul Scientifique; JAMSTEC: Japan Agency for Marine-Earth
Science and Technology; AOR (UoT): Atmosphere and Ocean Research Institute (The
University of Tokyo); NIES: National Institute for Environmental Studies).

Models Institution Country
BCC-CSM1-1 esm Beijing Climate Center, CMA China
CanESM2 esm

Canadian Centre for Climate Modelling and Analysis Canada
CanESM2
CCSM4 National Center for Atmospheric Research USA
CESM1-BGC esm

NSF, DOE, and NCAR USA
CESM1-BGC
CESM1-CAM5
CESM1-WACCM
CNRM-CM5 Centre National de Recherches Meteorologiques France
CSIRO-ACCESS1-0

CSIRO and Bureau of Meteorology AustraliaCSIRO-ACCESS1-3
CSIRO-MK3-6-0
FGOALS-g2 Institute of Atmospheric Physics, CAS, TU China
GFDL-CM3

NOAA Geophysical Fluid Dynamics Laboratory USA
GFDL-ESM2G esm
GFDL-ESM2M esm
GFDL-ESM2M
GISS-E2-H

NASA Goddard Institute for Space Studies USA
GISS-E2-R
HadGEM2-CC

Met Office Hadley Centre UKHadGEM2-ES esm
HadGEM2-ES
INMCM4 esm Institute for Numerical Mathematics Russia
IPSL-CM5A-LR esm

Institut Pierre-Simon Laplace France
IPSL-CM5A-LR
MIROC5

JAMSTEC, AOR (UoT), NIES JapanMIROC-ESM esm
MIROC-ESM
MPI-ESM-LR esm

Max Planck Institute for Meteorology Germany
MPI-ESM-LR
MRI-CGCM3

Meteorological Research Institute Japan
MRI-ESM1 esm
NorESM1-M

Norwegian Climate Centre Norway
NorESM1-ME
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Figure S1: Bias ratio (CMIP5/CRU) of selected climate model simulations of summer 
precipitation (June, July, August in the Northern Hemisphere, and December, January, February 
in the Southern Hemisphere) – similar to Figure 2 in Liu et al. (2013), but for the period 1951-
2005. 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S2: Bias ratio (CMIP5/CRU) of selected climate model simulations of winter precipitation 
(December, January, February in the Northern Hemisphere, and June, July, August in the 
Southern Hemisphere) -  similar to Figure 3 in Liu et al. (2013), but for the period 1951-2005. 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S3: Global averages of the overall bias, MQB above 75th quantile (Q75), and MQB above 
90th quantile (Q90) for CMIP5 models and their ensemble median -   Similar to Figure 4 in Liu et 
al. (2013), but for the period 1951-2005. 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S4: CMIP5 climate model regional summer and winter biases over (a) Europe, (b) 
Amazon, (c) central Africa, (d) Australia, (e) western United States, (f) Siberia, (g) Canada, (h) 
south China - similar to Figure 5 in Liu et al. (2013), but for the period 1951-2005. 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S5: CMIP5 climate model regional summer and winter monthly quantile bias (MQB, 75th 
percentile threshold) over (a) Europe, (b) Amazon, (c) central Africa, (d) Australia, (e) western 
United States, (f) Siberia, (g) Canada, (h) south China - similar to Figure 6 in Liu et al. (2013), but 
for the period 1951-2005. 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure S6: CMIP5 climate model regional summer and winter monthly quantile bias (MQB, 90th 
percentile threshold) over (a) Europe, (b) Amazon, (c) central Africa, (d) Australia, (e) western 
United States, (f) Siberia, (g) Canada, (h) south China - similar to Figure 7 in Liu et al. (2013), but 
for the period 1951-2005. 
 
 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7: Global averages of the overall bias, MQB above 75th quantile (Q75), and MQB above 

90th quantile (Q90) for all the CMIP5 models and their ensemble median relative to the 

University of Delaware global precipitation data. 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S8: Regional summer and winter relative to the University of Delaware global 

precipitation data over (a) Europe, (b) Amazon, (c) central Africa, (d) Australia, (e) western 

United States, (f) Siberia, (g) Canada, (h) south China. 
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